Malicious Web Page Detection and Content Analysis
نویسندگان
چکیده
منابع مشابه
Analyzing new features of infected web content in detection of malicious web pages
Recent improvements in web standards and technologies enable the attackers to hide and obfuscate infectious codes with new methods and thus escaping the security filters. In this paper, we study the application of machine learning techniques in detecting malicious web pages. In order to detect malicious web pages, we propose and analyze a novel set of features including HTML, JavaScript (jQuery...
متن کاملTwo-Phase Malicious Web Page Detection Scheme Using Misuse and Anomaly Detection
Misuse detection method and anomaly detection method are widely used for the detection of malicious web pages. Both are based on machine learning. Misuse detection can detect known malicious web pages, but it cannot detect new ones. In contrast, anomaly detection can detect unknown malicious web pages, but it has a high false positive rate. In order to achieve a high detection rate through prec...
متن کاملA Web Content Analytics Architecture for Malicious Javascript Detection
Recent web-based cyber attacks are evolving into a new form of attacks such as private information theft and DDoS attack exploiting JavaScript within a web page. These attacks can be made just by accessing a web site without distribution of malicious codes and infection. Script-based cyber attacks are hard to detect with traditional security equipments such as Firewall and IPS because they inje...
متن کاملSpyProxy: Execution-based Detection of Malicious Web Content
This paper explores the use of execution-based Web content analysis to protect users from Internet-borne malware. Many anti-malware tools use signatures to identify malware infections on a user’s PC. In contrast, our approach is to render and observe active Web content in a disposable virtual machine before it reaches the user’s browser, identifying and blocking pages whose behavior is suspicio...
متن کاملEarly detection of malicious web content with applied machine learning
This thesis explores the use of applied machine learning techniques to augment traditional methods of identifying and preventing web-based attacks. Several factors complicate the identification of web-based attacks. The first is the scale of the web. The amount of data on the web and the heterogeneous nature of this data complicate efforts to distinguish between benign sites and attack sites. S...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computer Applications
سال: 2021
ISSN: 0975-8887
DOI: 10.5120/ijca2021921249